pyseobnr.auxiliary.mode_mixing.auxiliary_functions_modemixing.hdot_ellm0_nu

pyseobnr.auxiliary.mode_mixing.auxiliary_functions_modemixing.hdot_ellm0_nu(ell, m, j, h_ellm, h_mm, hdot_ellm, hdot_mm, omega_ellm, omega_mm, phi_ellm, phi_mm)[source]

Computes the amplitude’s first derivative of the spheroidal \((\ell,m,0)\) mode at at attachment time from the (\(\ell,m\)) and (\(\ell^{\prime} = m,m\)) spherical modes

Parameters:
  • ell (int) – \(\ell\) index of the relevant mode

  • m (int) – m index of the relevant mode

  • j (float) – dimensionless spin parameter

  • h_ellm (float) – amplitude of the (\(\ell,m\)) mode at attachment time

  • h_mm (float) – amplitude of the (\(\ell^{\prime} = m,m\)) mode at attachment time

  • hdot_ellm (float) – amplitude’s first derivative of the (\(\ell,m\)) mode at attachment time

  • hdot_mm (float) – amplitude’s first derivative of the (\(\ell^{\prime} = m,m\)) mode at attachment time

  • omega_ellm (float) – frequency of the (\(\ell,m\)) mode at attachment time

  • omega_mm (float) – frequency of the (\(\ell^{\prime} = m,m\)) mode at attachment time

  • phi_ellm (float) – phase of the (\(\ell,m\)) mode at attachment time

  • phi_mm (float) – phase of the (\(\ell^{\prime} = m,m\)) mode at attachment time

Returns:

the amplitude’s first derivative of the spheroidal \((\ell,m,0)\) mode at at attachment time

Return type:

float